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ABSTRACT
Thin film piezoelectric resonators have been used in the
synthesis of crystal filters at microwave frequencies and
for oscillator control [1-6]. These resonators may be
modeled using equivalent circuits or analytical expressions
derived from acoustic boundary value excitation problems.
Results of the modeling are described in three forms; 1)
impedance characteristics plotted versus frequency, 2)
analytical expressions of impedance, and 3) lumped ele-
ment equivalent circuits useful forfilter design and analysis.
Two filter types are modeled, a simple ladder filter and a
more complex stacked crystal filter using acoustically
coupled resonators.

1,Introduction

Resonators whose extent is large in all lateral directions
compared to the thickness can be modeled analytically as
one dimensional electromechanical structures using suit-
able differential equations. From a solution of the one
dimensional plane wave pure mode boundary value
problem the electrical impedance of a simple resonator is
found to be.
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The parameters in the equation, as determined by material
constants are, f ~= V/2 d parallel resonant frequency

where Vis the wave velocity and d the resonator thickness
and K2 the piezoelectric coupling coefficient given in
material constants by,

k2

K2=- kz=~
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The material constants are; e piezoelectric constant, c ‘the
stiffness constant, and eS the constant strain dielectric

constant. The capacitance is given by C = ES( area)/ d.

When the parameters are determined by measurement of
series and parallel resonant frequencies (f, and ~ J ;
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Loss in the resonator equation is modeled by a finite Q
through a complex phase,

~=:(1)
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f-f,

Here material Qis essentially equal to the impedance phase
slope Q, measured at resonant frequencies.

u

Equation (1) is an accurate model of most pure mode o
resonators that predicts harmonic responses but may not
:o~l convenient to use in design as a lumped element

H.Equivalent Circuits

A lumped element circuit model often used by low fre-
quency crystal filter designers is the Butterworth Van Dyke
(BVD) model shown in Fig. 1. From an analysis of the circuit
an expression for resonator impedance can be obtained in
a convenient normalized pole-zero form,
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Fig. 1 a) Cross section of piezoelectric resonator and b)
Butterworth Van Dvke Iumoed element equivalent circuit
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where
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From measurements o~ f,, f ~,low fr~quency capacitance
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C ~,,resistance at series resonance R, the lumped element
cmantities are determined as follows,

Co=(k)’cfC.=[(k)’-;lcf
J# x (3)

L= 1
2Jcf, ca

R=—~
~ Q,K2

If the impedance equation is used for modeling the reso-
nator, rather than lumped elements in a circuit analysis
program, then the Qs in (2) are best determined by phase
slope measurements.

The two resonator models can be linked by doing a
mathematical expansion of(1) about series resonance and
deriving the pertinent quantities,
c ()

-2 2“

~=2 ; K2=0.81057K2
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ct, =~ =C(l+kz)
1-K2

or equivalently where C ~{ is determined by the constant

stress dielectric constant E~and C from the constant strain

dielectric constant G‘.

Figure 2 shows a plot of resonator impedance using both
(l), solid line, and (2), dashed line. Although the lumped
element model does not show the harmonic response it
closelv atmroximates the resonator around the resonances
used t_odetermine the element values.
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‘ig. 2 Normalized absolute value of impedance from
!quations representing plane wave boundary value
Olution, solid line, and Butterworth Van Dyke (BVD]
!quivalent lumped element equivalent circuit model:
lashed line. The BVD model does not predict harmonic
esponses.
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Ill. Uomposne i-(esonator

At microwave frequencies crystal resonators are only
approximately described by the impedance relations in (1)
and (2). Issues such as electrode metal thickness and
associated losses are not modeled by simple impedance
equations. A useful method is to employ transmission line
concepts and matrix algebra to analyze relatively complex
geometries. The only uncertainty in this process is properly

modeling the piezoelectric plate and its boundary condi-
tions. As illustrated in Fig. 3 the piezoelectric plate is
essentially a three port network having two acoustic ports
and one electrical port. By solving the boundary value
Droblem an eauation for the electrical Dort imr)edance in
~erms of arbitraw mechanical loads is dbtained:
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‘ig, 3. Schematic of three porl configuration of a piezo
!Iectric plate having arbitrary mechanical loads on left am
iaht.

( )(z= J- ~_ K2tan+z
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Zm=
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where z, and Z( denote load impedances normalized by
the piezoelectric film impedance, $ = 0/2, where o = kcf is
the phase across the piezoelectric film.

Composite resonator structures modeled using (4) require
that the external region be expressed as an equivalent
impedance. For complex geometries the effective load
impedance of the substrate can be found from an ABCD
matrix cascading of equivalent transmission line sections
or by successive use of the transmission line equation,

(

Zlcos O+j Zosin O
Zia=zo

}

(5)

ZOcose+j Z{sinf3

Here Z i, is the input impedance, Z o the characteristic
impedance, Qthe phase across the delay section, and Z ~
the load impedance attached to the line section.

Using partial fraction expansions on (4) it is possible to
derive the Mason circuit model for the one dimensional
pure mode plane wave resonator. This circuit, Fig. 4, and
variations are used to model piezoelectric transduction
problems with varying degrees of success. The model is
exact for the one dimensional pure mode case.
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“ig. 4. Mason equivalent circuit model for the piezo-
, -!lectric plate. Z.= jZ, tan +,

lZe=-jZ,csc8 Z,= n/(wpCK2)

IV. Filters

Filters using piezoelectric resonators take one of two
forms; electrically or mechanically coupled. A simple
manifestation of the electrically coupled resonator filter is
a ladder filter composed of resonators in the series andlor
shunt branches.

Insertion loss of a crystal filter is determined primarily by
the series resistance of the crystal as given in (3). The
material and resonator quality is the K 2Q product whereas
the reactance X. is determined by the design procedure.

In low frequency quartz crystals the K’ Q product can
approach 1000 yet the series resistance is relatively large
due to the large capacitative reactance XO at low fre-
quencies due in part to the need for small resonator areas.
In contrast a thin film aluminum nitride resonator at 1 GHz
with a K’ Q of only 300 and a reactance of 50 ohms can
yield a low series resistance in a 50 ohm system.

The filter is shown to illustrate the main features of the
modeling rather than a particular design. Mid-band inser-
tion loss is determined by resistance of the series reso-
nators at series resonance aided in part by the parallel
resonance of the shunt resonator in mid-band. The out of
band levels are determined strictly by the capacitive voltage
divider ratios and are not determined by electromechanical
properties of the resonator. The response of a simple
ladder filter, computed using (1) to model the resonators,
is shown in Fig. 5.

A great deal of work has been done on ladder filter design
and production for low frequencies where the technology
is well established.

The stacked crystal filter (SCF), shown in Fig. 6 is a more
complex filter using mechanically coupled resonators in
each individual section. The device is different than the
monolithic filter which employs transverse plate wave
propagation to achieve coupling. The tight thickness mode
coupling in the SCF gives rise to a rather rounded filter
response, shown in Fig. 7 near the center frequency,
characteristic of over coupled resonators.
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‘ig. 5Simple microwave Tladderfilterfor GPS using three
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ig. 6 Stacked crystal filter. a) Schematic representation,
) equivalent circuit derived from Mason model and
,utterworth Van Dyke expansions, c) Inductor tuning to
ICrease bandwidth.

An equivalent circuit of the SCF is shown in Fig. 6b for a
single section. The circuit model was derived from an
expansion of two Mason models joined back to back (just
like the construction of the resonator itself) [7]. The final
circuit is obtained from an expansion of the distributed
impedances to give a lumped element description and the
series RLC network. The lumped elements in the series
path have twice the impedances of BVD elements in a
single resonator. Alternatively this may be viewed as the
series branch of a single resonator having half the piezo-



electric coupling coefficient. The latter interpretation is
consistent with the fact that the SCF is a composite
resonator operating with two half wavelengths (i.e. at the
second overtone) and therefore has approximately half the
coupling coefficient of a fundamental mode resonator.
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:ig. 7 Computed response of stacked crystal. Solid [in

Iwithout inductortunina, dashed line with inductortunin
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Minimum insertion loss for the single section SCF occurs
when the reactance X. is equal to the source and load
resistance. For smaller X. the shunt current is too large
and for larger XOthe series resistance is too high. Under
these restrictive conditions the insertion loss is determined
by K2Q alone.

Unlike normal crystal filters the SCF exhibits close in
overtone responses. The fundamental frequency, where
there is a half acoustic wavelength across the thickness of
the resonator, is the lowest frequency response but of
narrower bandwidth than the second response that occurs
when there is a half acoustic wavelength across each part
of the SCF resonator. This is the strongest resonance and
hence widest bandwidth filter. The next highest response
is the third overtone and is of even narrower bandwidth.
Considering the wide band response as the center fre-
quency, then the other (probably undesirable) responses
occur at half and three halves center frequency. In contrast
a fundamental mode Iadderfilterat center frequency would
have its next response at three times center frequency or
twice as far away as in the SCF.

The problems of limited bandwidth, insertion loss, and
spurs in the SCF can be cured to a certain extent by
employing inductor tuning in a similar manner employed in
Iowfrequency Iadderfilters. By using inductors in the shunt
branch the shunt current can be reduced relative to the
series current without having to use high Q inductors. Once
tuning is used the XO = Recondition for minimum insertion
loss no longer holds and series resistance maybe reduced
by reducing X., by increasing the resonator area. The effect
of decreasing XOand using inductor tuning is illustrated in
Fig. 8. Although the bandwidth increase is substantial the
realization of inductor Q’s of 100 are questionable and the
device area is now five times lamer. ‘
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Fig. 8 Mid-frequency range response for a two sectior
stacked crystal. The horizontal dashed lines are the -1
dB and -3 dB references. The solid curve is the SCF witt
10 ohm capacitative reactance resonators and 50 ohm
source and load resistances without inductor tuning. The
two dashed line responses are for inductor Q’s of 100 and
25.
.-

v. summary

Thin film resonators and filters have been modeling using
a combination of impedance equations derived from wave
propagation boundary value solutions or associated
lumped element circuit models and matrix manipulation of
transmission line sections. Approximate circuit models
allow insight for design purposes while more detailed
equations and procedures allow accurate characterization
of designs.
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